ATTRACTOR–REPELLER PAIR, MORSE DECOMPOSITION AND LYAPUNOV FUNCTION FOR RANDOM DYNAMICAL SYSTEMS
نویسندگان
چکیده
منابع مشابه
Attractor-repeller pair, Morse decomposition and Lyapunov function for random dynamical systems
In the stability theory of dynamical systems, Lyapunov functions play a fundamental role. In this paper, we study the attractor-repeller pair decomposition and Morse decomposition for compact metric space in the random setting. In contrast to [8], by introducing slightly stronger definitions of random attractor and repeller, we characterize attractor-repeller pair decompositions and Morse decom...
متن کاملConstruction of strict Lyapunov function for nonlinear parameterised perturbed systems
In this paper, global uniform exponential stability of perturbed dynamical systems is studied by using Lyapunov techniques. The system presents a perturbation term which is bounded by an integrable function with the assumption that the nominal system is globally uniformly exponentially stable. Some examples in dimensional two are given to illustrate the applicability of the main results.
متن کاملNovikov - Morse Theory for Dynamical Systems HuiJun
The present paper contains an interpretation and generalization of Novikov’s theory for Morse type inequalities for closed 1-forms in terms of concepts from Conley’s theory for dynamical systems. We introduce the concept of a flow carrying a cocycle α, (generalized) α-flow for short, where α is a cocycle in bounded Alexander-Spanier cohomology theory. Gradient-like flows can then be characteriz...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولLyapunov Exponents for Continuous-Time Dynamical Systems
In this article, different methods of computing Lyapunov exponents for continuous-time dynamical systems are briefly reviewed. The relative merits and demerits of these methods are pointed out. 1. Preliminaries The problem of detecting and quantifying chaos in a wide variety of systems is an ongoing and important activity. In this context, computing the spectrum of Lyapunov exponents has proven...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastics and Dynamics
سال: 2008
ISSN: 0219-4937,1793-6799
DOI: 10.1142/s0219493708002494